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EXECUTIVE SUMMARY 

Unlocking Germany’s offshore wind potential and deploying domestic electrolysis are critical 

to achieving affordable, secure energy and  meeting Germany’s 2045 climate neutrality target. 

However, cost expectations for connecting offshore wind with undersea electricity cables have 

been exploding recently: The latest electricity Network Development Plan expects offshore 

transmission costs of €158 billion by 2045, on top of a similar number for the onshore 

transmission network (which is partly also driven by offshore wind expansion). To reduce 

connection costs, the latest Spatial Offshore Grid Plan by the Federal Maritime and 

Hydrographic Agency (BSH) invites sector feedback on ’overplanting’ of offshore electricity 

cables in the German North Sea, particularly in far-offshore zones 4 and 5 of the North Sea.  

This study evaluates how combining electricity grid connections with hydrogen 

pipeline connections and offshore hydrogen production – referred to as offshore sector 

coupling – can complement the BSH proposal of electricity-only overplanting to 

minimise the cost of integrating offshore wind. 

Our analysis covers two offshore wind deployment scenarios to 2045: 70 GW reflecting 

Germany’s statutory target, and 55 GW representing a more conservative expansion 

constrained by wake effects. For each scenario, we compare three configurations: 

• Baseline: Current plans with equal offshore turbine and electricity cable capacity, with; 

electrolysers to produce hydrogen located onshore,  

• Electricity-only overplanting:  Excess turbine capacity relative to cables and 

electrolysers located onshore,  

• Sector Coupling: Excess turbine capacity relative to grid connection; offshore electrolysis 

with a hydrogen pipeline complementing electric connections. 

We assess these three configurations using an optimisation model that determines the cost-

minimising capacity of transport infrastructure required to integrate offshore wind and 

hydrogen production in zones 4 and 5 of the North Sea (while connection infrastructure in 

nearer-shore zones 1-3 are not varied). 

Key findings at a glance 

 

1. Offshore sector coupling enables cost savings of up to €1.7 billion per year 

in Zones 4 and 5 of the German North Sea  
 

Electricity-only overplanting does already reduce net infrastructure costs 

compared to the ‘current build-out’ baseline by €778 million per year in the 70 

GW offshore wind scenario, and €116 million in the 55 GW scenario, 

respectively. However, substantially higher savings are achieved if offshore 

sector coupling is applied: savings of €1,664 million per year in the 70 GW 

scenario and €477 million per year in the 55 GW scenario. 
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2. Cost-effective transport infrastructure explains the economic advantage 
 

Offshore sector coupling is a valuable option for connecting far-from-shore wind 

areas, due to lowest costs by combining efficient energy transport and flexible 

use of offshore generation. Despite higher costs for offshore electrolysis 

compared to onshore electrolysis, the use of hydrogen pipelines significantly 

reduces transport costs. And the flexibility to produce and export either electricity 

or hydrogen improves generation and transmission infrastructure utilisation and 

minimises curtailment of offshore wind electricity.   

 

In particular, power grid utilisation increases from 52 % with electricity-only 

overplanting to 65 % with offshore sector coupling in the 70 GW scenario, and 

from 55 % to 64 % in the 55 GW scenario. Curtailment falls from 14 % to 11 % 

at 70 GW, and from 5 % to 3 % at 55 GW, resulting in about 2.5 TWh more total 

energy delivered to the system in 2045 in the 70 GW scenario and about 1 TWh 

more in the 55 GW scenario, combining electricity and hydrogen outputs. 

 

 

3. Results remain robust across key sensitivities on electrolyser capacity, 

electricity prices and offshore electrolyser costs 

Offshore sector coupling delivers the lowest net infrastructure costs across key 

sensitivities. Moreover, the relative advantage a) increases with higher 

electrolyser capacity, b) remains stable across electricity price variations of 

± 20 %, and c) persists even when offshore electrolysers are assumed to be 

twice as expensive as onshore electrolysers. This confirms that the economic 

case for offshore sector coupling is not dependent on narrowly defined parameter 

ranges but holds under a broad set of future market conditions. 

 

 

4. Required action to enable offshore sector coupling  

Key regulatory elements are to be addressed in order to enable offshore sector 

coupling in Germany and realise the potential to cost-efficiently deploy  offshore 

wind energy. The regulatory elements include a) expanding site designations 

beyond the current 1 GW for offshore electrolysis planned at pilot area SEN-1 

and allowing mixed offshore power-and-hydrogen connection concepts, b) 

advancing planning for both power and hydrogen transmission in parallel, c) 

granting same status of public interest to offshore electrolyser projects as to 

onshore electrolyser projects, and d) implementing mechanisms to mitigate 

investment risks. 
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1 Introduction 

Germany aims to achieve climate neutrality by 2045, with offshore and renewable hydrogen 

on the basis of electrolysis with renewable electricity as central elements. Targets include 30 

GW of offshore wind electricity generation capacity by 2030, 50 GW by 2040, and 70 GW by 

2045 (Figure 1).  

Figure 1 German legal targets for offshore wind generation capacity 

 

Source: Frontier Economics based on Deutsche WindGuard (https://www.offshore-stiftung.de/en/status-quo-offshore-
windenergy.php) and WindSeeG (www.gesetze-im-internet.de/windseeg)  

Until today Germany’s planning principles are based on the assumption that every offshore 

wind park receives a 100 % electricity cable connection, with the exception of a 1 GW pilot 

area (SEN-1) where alternative connection concepts such as offshore hydrogen are supposed 

to be trialled. However, cost expectations for connecting offshore wind with undersea 

electricity cables have been exploding recently: The latest electricity Network Development 

Plan expects offshore transmission costs of €158 billion by 2045, on top of a similar number 

for the onshore transmission network. 
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Figure 2 Development of expected electricity transmission network expansion 

cost between 2022 and 2024 

 

Source: Frontier Economics based on Network Development Plans (NDP) 2022 and 2024 

In line with recent monitoring, cost-efficient domestic electrolysis should complement large-

scale hydrogen imports and be developed in a system-serving manner. Ensuring cost 

efficiency in reaching these targets is necessary so that energy supply remains competitive 

and affordable.  

In this context, the Federal Maritime and Hydrographic Agency (BSH)’s latest Spatial Offshore 

Grid Plan (FEP) has revived discussion on overplanting offshore wind capacity relative to grid 

connections, particularly in Zones 4 and 5 of the North Sea, i.e. the zones farthest away from 

the German coast in the so-called duckbill (“Entenschnabel”). This alternative has been 

explored before, for instance in the UK, Ireland and the Netherlands.1  

The BSH proposal entails a trade-off between lowering costs of offshore electricity grid 

connection and reducing electricity volumes of offshore wind parks transported to consumers: 

On the one hand, sizing the cable below offshore peak generation capacity lowers costs, as 

peak output is seldom reached. On the other hand, it limits the maximum power deliverable 

 
1  For example: UK Round 3 leasing process (2008), Ireland’s decision to raise its cap by 20 percent above maximum export 

capacity, and the Netherlands’ approach allowing up to around 8 percent additional capacity in the Borssele tender. 

Following Borràs Mora et al. (2019) in Journal of Physics Conference Series 1356 and Wolter et al. (2016) in the 15th Wind 

Integration Workshop, Overplanting in Offshore Wind Power Plants in Different Regulatory Regimes. The latter refers to 

studies in Ireland suggesting optimal overplanting at 8-20% above the transmission capacity for onshore wind and 2-5% 

optimal overplanting for offshore wind in the United Kingdom 
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and requires curtailing energy, thereby constraining revenues and increasing the need for 

subsidies for offshore wind.  

Several factors shape this trade-off. Overplanting is more economically beneficial when 

turbine availability is lower (due to wind speed distribution, wake effects, or faster blade 

degradation) or when turbine costs are relatively low compared to electrical grid infrastructure. 

Since these conditions vary across contexts and concrete offshore park sites, each proposal 

requires an empirical assessment tailored to the specific location.2 

Recent studies provide evidence specific to Germany. An analysis by Fraunhofer for the BSH 

indicates that 20 % overplanting in Zones 4 and 5 without sector coupling will lead to 2.8 % 

lower available offshore wind electricity (yield losses) at the aggregate level of the German 

Exclusive Economic Zone (EEZ) under area-aggregated peak-load capping, with a further 

1.4 % yield losses under area- or farm-specific capping.3 At the area level, yield losses are 

higher, between 5-10 % as shown in the figure below.  

Figure 3 Yield losses under different levels of overplanting in the German North 

Sea at area level 

 

Source: Frontier Economics based on Vollmer & Dörenkämper (Fraunhofer, 2025)  

Notes:      Scenarios 24 and 25 are alternative offshore wind expansion pathways defined by BSH (see Footnote 3). The 
scenarios differ in total offshore wind capacity: 75 GW in scenario 24 and 70 GW in scenario 25. Each dot represents 
results for North Sea wind offshore areas N-14, N-16, N-19, N-9E, N-12E, and N-13E. 

Likewise, a study by E-Bridge for AquaVentus found that allowing (electricity-only) 

overplanting in Zones 4 and 5 of the German North Sea improves both the internal rate of 

return (IRR) and the net present value (NPV) of offshore wind projects compared to a no-

 
2  See Borràs Mora et al. (2019) and Wolter et al. (2016)  

3  Vollmer, L., & Dörenkämper, M. (Fraunhofer, 2025) Ad-hoc analysis: yield modelling of expansion scenarios 24 and 25. 

Scenarios 24 and 25 are alternative offshore wind expansion pathways defined by BSH. S24 assumes merged areas N-

14/N-15, enlarged N-17, and a new zoning of N-5 (4.4 GW), leading to slightly lower capacity than in the baseline scenario. 

S25 keeps the same layouts as S24 but models existing wind farms in N-5 instead of replanning, with adjusted capacity 

allocations. The study differentiates between two forms of peak-load capping in response to overplanting. Under area-

aggregated capping, spare grid capacity can be shared between wind farms within the same area. Under area- or farm-

specific capping, each wind farm is limited to its own share of the grid connection, with no balancing across farms.  
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overplanting case where  turbine capacity matches grid capacity.4 The next chart summarises 

these findings. 

Figure 4 Increases in IRR (pp) left and NPV (€bn2024) right relative to no 

overplanting 

 

Source: Frontier Economics based on E-Bridge (2024) for AquaVentus 

Notes:     The study evaluates multiple scenarios with differing assumptions on total demand and energy mix. The ranges 
presented indicate the variation in results across these scenarios. 

 

AquaVentus aims to advance the understanding of how offshore sector coupling through 

mixed power and hydrogen connections can make use of overplanting to strengthen project 

economics and lower overall system costs. This study examines how offshore electrolysis, co-

located with wind generation and connected to shore via both power cables and hydrogen 

pipelines, can enhance the efficient use of Germany’s offshore wind potential.   

 
4  E-Bridge (2024) for AquaVentus Assessment of connection concepts for Germany’s far out North Sea offshore wind areas 

for an efficient energy transition 
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2 Model results show that offshore sector coupling 

delivers the most cost-effective use of offshore wind 

potential 

In this section we first set out the analytical approach used to compare offshore sector coupling 

with alternative configurations for integrating offshore wind energy, including key assumptions, 

scenarios, and modelling design. We then present the main results under central assumptions, 

followed by sensitivity analyses that test the robustness of these findings. 

2.1 Approach: Setting up the comparison of offshore sector coupling and 

alternative configurations 

We examine offshore sector coupling with mixed power and hydrogen offshore connections 

as an alternative to the BSH proposal of electricity-only overplanting in zones 4 and 5 of the 

German North Sea. In the BSH proposal, offshore wind capacity exceeds cable capacity and 

all connections to shore are electricity-only. We compare both options against a ‘current build-

out’ baseline where cable capacity equals turbine capacity (that is, no overplanting) and all 

connections are electricity-only. Figure 5 illustrates how our analysis defines the three 

configurations. 

Figure 5 Overview of infrastructure configurations 

 

Source: Frontier Economics 

Notes: 1) All configurations assume identical wind farm capacities and identical electrolyser capacities within each offshore 
wind deployment scenario (70 GW and 55 GW). Capacities vary between offshore deployment scenarios but are the 
same across configurations within each offshore deployment scenario. In baseline and overplanting configuration, the 
electrolyser is located onshore at the coast while in the offshore sector coupling configuration the electrolyser is 
located offshore next to the wind farms. Across all configurations and both scenarios the power connection for 
offshore and coastal electrolysers is bidirectional, implying that electrolysers can also use grid-electricity in situations 
with low offshore wind generation but low electricity prices (e.g. driven by high solar power infeed).  
2) The model optimises offshore cable, electrolysis, and hydrogen transport given the planned turbine capacity, 
allowing overplanting of turbine capacity relative to cable capacity and of electrolyser capacity relative to hydrogen 
pipeline capacity. 

We conduct our comparison of different configurations for two different offshore wind 

deployment scenarios to 2045 (see Figure):  

Alternative: Electricity-only Overplanting 
Wind capacity exceeds cable capacity; 

electric connections only (capturing BSH 

proposal).

Study case: Offshore sector coupling
Wind capacity exceeds cable capacity; 

offshore electrolysis and hydrogen network 

infrastructure complement electric 

connections.

Baseline: current build-out
Wind farm and cable capacities match. 

Electric connections only.:
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• The first is 70 GW, reflecting Germany’s statutory wind offshore expansion target, with the 

current FEP providing the layout to achieve it. In this scenario, we set electrolyser capacity 

at 10 GW across configurations, where the location (on- or offshore) differs between the 

baseline, overplanting and offshore sector coupling configurations.5  

• The second is 55 GW, reflecting a constraint of limiting offshore wind capacity to mitigate 

wake effects. In this scenario, we set electrolyser capacity at 4 GW across configurations. 

We assume the same electrolysis capacity across configurations within each offshore wind 

deployment scenario (10 GW in the 70 GW offshore wind scenario and 4 GW in the 55 GW 

scenario), rather than optimising it within each configuration. This is consistent with the design 

of our  stand-alone offshore system model which, for each wind offshore capacity 

scenario and each configuration, identifies the offshore connection set-up (i.e. the 

capacity of electricity cable and hydrogen pipeline) that minimises the net 

infrastructure costs of integrating offshore energy.6 

Unlike a generalised energy system model, the stand-alone model does not account for wider 

interactions with end-use sectors or the overall energy mix. It therefore does not optimise 

hydrogen demand or its sourcing between imports and domestic production.  

The assumption of 10 GW electrolysis capacity in the 70 GW offshore wind scenario is 

consistent with AquaVentus vision of developing 10 GW offshore electrolysis capacity in the 

German Exclusive Economic Zone by 2035. The 4 GW assumption in the 55 GW scenario 

reflects the lower offshore wind capacity in Zones 4 and 5 (11.6 GW compared with 26.5 GW 

in the 70 GW scenario, see figure below), maintaining consistency between scenarios.   

Figure 6 Overview of two different offshore build-out scenarios 

 

 
5  Baseline and overplanting configurations assume 10 GW electrolyser capacity located onshore at the coast while in the 

offshore sector coupling configuration 10 GW electrolyser capacity is located offshore next to the wind farms. 

6  See Annex B for a more detailed model illustration. 
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Source: Frontier Economics 

Note: Full load hours based on wind model simulations. 

 Within each configuration and scenario, we optimise the net infrastructure costs of integrating 

offshore energy, defined as the difference between all transport and production infrastructure 

costs and the revenues from electricity and hydrogen sales at wholesale market prices: 

• Costs consist of Capital Expenditures (CAPEX) and Operating Expenditures (OPEX) for 

the Offshore Wind Farm (OWF), the electricity cable connection offshore and onshore, the 

electrolyser and the hydrogen pipeline connection. See Annex B for an overview of 

technical and cost assumptions. 

• Electricity revenues are calculated by valuing the hourly electricity volumes transported 

from offshore to the mainland with hourly electricity prices that we get from two separate 

runs of our cross-sector energy system system-wide model COMET (one run for the 70 

GW and one for the 55 GW offshore expansion scenario).7 Hydrogen revenues are 

calculated by valuing hydrogen outputs with hydrogen price estimates from a Fraunhofer 

assessment.8 

As part of our analysis, we evaluated alternative locations for onshore electrolysis in the 

electricity-only overplanting configuration to identify the most suitable reference for comparing 

offshore sector coupling. We tested coastal and inland (southern Germany) locations. We 

found that coastal electrolysis performs generally better, as it avoids additional onshore 

electricity grid integration costs, and therefore use it as our reference scenario.9 For 

transparency, we include the inland location as a sensitivity in Annex C. 

In assessing how to minimise net infrastructure costs for offshore energy integration, our 

analysis addresses the guiding question of which configuration makes best use of 

Germany’s offshore energy potential. This provides a consistent basis for comparing 

configurations, without dealing with how costs and benefits are distributed among 

stakeholders. The analysis is not intended as a cost-benefit assessment, as it does not extend 

 
7  We conduct hourly runs for the year 2045. To reflect correct offshore capacity in modelling electricity, we model prices 

individually for the two OWF build out scenarios assuming 70 GW and 55 GW installed offshore capacity. More 

information on our COMET model can be found under: https://www.frontier-economics.com/uk/en/hot-topics/collection-

i21808-comet/. Our model in this focuses only on offshore wind generation and the onshore power and hydrogen 

infrastructure needed to use offshore potential, unlike a system-wide sector model. In treating power prices as 

exogenous, our model does not capture the feedback loop between electrolysis deployment and electricity prices. As the 

electrolyser capacity is identical across all configurations, this affects all options equally and therefore does not constitute 

a relevant limitation for assessing the most economical option. 

8  We take a median of 110 €/MWh as our central case from a range of 90–130 €/MWh. The HyPAT Working Paper 

01/2023 (Wietschel et al., 2023) explains that “price regions below 90 €/MWh and lower are hardly to be expected. Even 

pure cost considerations show that this is currently only feasible at very favourable locations worldwide. But on top of the 

production costs identified in these studies come, among other things, transport costs, profit margins, capital costs 

reflecting country risks, distribution costs, R&D costs etc.” (translation of the German original, p. 26). On the demand 

side, the study notes that “at high hydrogen prices it is cheaper to expand renewables further, accept electricity surpluses 

and use more electricity in district heating networks. Therefore, demand for hydrogen can become very low at high 

prices.” (translation of the German original, p. 26). 

9  In the coastal reference scenario, we allow overplanting of offshore wind and offshore network capacity relative to the 

onshore cable in the current build-out configuration. 

https://www.frontier-economics.com/uk/en/hot-topics/collection-i21808-comet/
https://www.frontier-economics.com/uk/en/hot-topics/collection-i21808-comet/
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to system-wide considerations such as alternative pathways to net zero, the value of different 

decarbonisation trajectories, or the contribution of offshore potential to security of supply.  

We begin by setting out the main findings under our central assumptions before turning to 

sensitivities that test how robust these results are to changes in key variables. 

2.2 Key results: Offshore sector coupling enables the most economical 

case of using offshore wind 

Figure 7 summarises the optimal infrastructure set-up identified by our model, showing the 

installed capacities that minimise the net infrastructure costs of integrating offshore energy in 

the electricity-only overplanting and offshore sector coupling configurations across the 

offshore wind deployment scenarios.  

In the electricity-only overplanting and offshore sector coupling, we find an optimal 36 % 

overplanting of offshore wind capacity relative to total offshore transport capacity (see 

Overplanting total). In the offshore sector coupling case, where a hydrogen pipeline 

complements the power cable, it is cost-optimising to install a smaller cable capacity than in 

electricity-only overplanting, as the pipeline provides an additional, cost-efficient transport 

route. The optimal pipeline capacity is equivalent to the electrolyser capacity suggesting that, 

given the cost-effective transport of energy at scale in the form of hydrogen, the cost-saving 

rationale that supports overplanting turbine capacity relative to cable capacity does not apply 

to electrolyser capacity relative to the hydrogen pipeline, even within an integrated power-and-

hydrogen configuration. 
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Figure 7 Cost-minimising infrastructure capacities across configurations and 

offshore wind deployment scenarios 

  

Source: Frontier Economics 

Note: * Due to 68 % electrolyser efficiency, a pipeline capacity of 68 % electrolyser capacity is sufficient to transport 100 % 
of energy from the electrolyser. Therefore, overplanting is at 0 % for electrolyser to pipeline capacity. 

We also find that offshore sector coupling is the most effective means of harnessing 

offshore wind potential in zones 4 and 5 of the German North Sea (see Figure 9). Both 

electricity-only overplanting and offshore sector coupling reduce the net infrastructure costs of 

integrating offshore energy potential compared to a no overplanting baseline configuration, 

with sector coupling delivering most economical result in both offshore wind deployment 

scenarios.10 

 
10  In the 55 GW scenario, the net integration costs even turn to a positive profit. This occurs even though the revenue side 

of the model captures only part of the system’s potential income (electricity and hydrogen sales at wholesale market 

prices), without including possible network tariffs or other remuneration mechanisms that could further support the 

financing of transport infrastructure. 
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Figure 8 Annual costs for integrating offshore energy across configurations in 

2045 (70 GW scenario) 

 

Source: Frontier Economics 

Note: Analysis only considers costs and revenues from offshore zones 4 and 5 (while zones 1-3 are not varied). 

Lower net infrastructure costs for integrating offshore energy arise from a reduced capacity of 

offshore electricity cables. While this reduction slightly decreases revenues from the sale of 

electricity valued at wholesale market prices and electrolyser costs are higher offshore than 

onshore, the savings in investment and operation costs are substantially larger. Due to the 

possibility of transporting energy to shore as hydrogen, electricity cable capacity can be 

reduced even further in the offshore sector coupling configuration.  
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Figure 9 Annual costs for integrating offshore energy across configurations in 

2045 (55 GW scenario) 

 

Source: Frontier Economics 

Note: Analysis only considers costs and revenues from offshore zone 4. No build-out of zone 5 in 55 GW scenario 

 

Offshore sector coupling leads to lowest net infrastructure costs for integrating 

offshore energy 

Specifically, offshore sector coupling reduces net infrastructure costs for integrating offshore 

energy by approximately €1,664 million per year relative to the baseline (current build-out) in 

the 70 GW scenario and by €477 million per year in the 55 GW scenario (see Figure 10). 

Electricity-only overplanting, for comparison, reduces these costs by only €678 million and 

€116 million per year, respectively. The larger relative savings in the 70 GW scenario show 

that offshore hydrogen becomes particularly valuable for integrating the final 15 GW, 

particularly the capacities located at the far shore in zone 5. 
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Figure 10 Savings in annual net infrastructure costs for integrating offshore 

energy in 2045 for electricity-only overplanting and sector coupling 

relative to current build-out 

  

Source: Frontier Economics 

Note: The baseline is current buildout with coastal electrolysis 
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which involves a stronger expansion into far-from-shore areas: curtailment amounts to 

11 % under offshore sector coupling compared with 14 % under electricity-only 

overplanting. This corresponds to 2.5 TWh more energy delivered to the system per year. 

In the 55 GW scenario, curtailment is 3 % with offshore sector coupling versus 5 % with 

electricity-only overplanting (see Figure 11). The smaller difference in this case reflects 

the shorter distance of wind farms from the coast (resulting in lower cable requirements 

for power transmission) as well as a lower wind farm capacity density, which leads to 

higher full-load hours and makes lower levels of overplanting economically optimal. In this 

case, the total energy made available to the system increases by around 1 TWh compared 

to electricity-only overplanting. 

Figure 11 Installed capacities and infrastructure utilisation 

 

Source: Frontier Economics 

Note: Lighter coloured areas indicate share of capacity that is curtailed (for OWF) or not utilised (for cable and pipeline)  

Due to its parallel infrastructure of power and hydrogen connection, offshore sector coupling 

enables system-beneficial utilisation of offshore wind energy. In hours of high electricity prices, 

power is preferentially transported to shore, maximising the value of electricity generation. 

When electricity prices are low or negative, offshore power is instead used directly for 

electrolysis and transported to shore as hydrogen. In these periods, the bidirectional offshore 

power connection also allows offshore electrolysers to utilise surplus electricity from the 

onshore grid, increasing the energy system value of offshore sector coupling. During periods 

of high wind output, both electricity and hydrogen are exported simultaneously. By combining 

both transport routes, the system can make full use of available offshore generation capacity 

and keep curtailment of offshore wind farms to a minimum. 
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Figure 12 Hourly use of offshore electricity generation (70 GW scenario) 

 

Source: Frontier Economics 
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sales, not investment decisions or costs, and as such does not impact on the comparison of net infrastructure costs to 
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For offshore sector coupling, net integration costs decline as electrolyser capacity increases, 

reflecting more efficient use of offshore generation and transport infrastructure. By contrast, 

in the overplanting configuration, net integration costs increase with higher electrolyser 

capacity. This is because additional offshore cable capacity is required to connect the larger 

onshore electrolyser capacity, and corresponding cost increases are not offset by revenue 

gains. In this context, offshore sector coupling represents the most effective way to 

enable a larger and more efficient deployment of domestic electrolysis. 

Figure 13 Sensitivity of savings in net integration cost to installed electrolyser 

capacity 

  

Source: Frontier Economics 

Note: Savings relative to current build-out.  

 

Sector coupling option is the most robust configuration against uncertain electricity 

prices 

For electricity prices, we test sensitivities in a range of -20 % to +20 % around the default 

wholesale price level, while keeping the price distribution constant (see Figure 14). Lower 

electricity prices reduce revenues from power sales, increasing the net infrastructure costs for 

offshore energy integration of electricity-only overplanting relative to offshore sector coupling, 

thereby strengthening the benefits of the latter. Higher electricity prices narrow this difference, 

but in both the 70 GW and 55 GW offshore wind scenarios offshore sector coupling continues 

to show lower net infrastructure costs for offshore energy integration across the tested range, 

indicating robust results. 

 -

 500

 1,000

 1,500

 2,000

Ele
ctri
ci…

S
a
v
in

g
s

in
 €

 m
il
li
o

n
p

.a
.

5
(-50 %)

10
(baseline)

15
(+50 %)

Installed electrolyser capacity in GW

2
(-50 %)

4
(baseline)

6
(+50 %)

70 GW Scenario 55 GW Scenario



EFFICIENT INTEGRATION OF MIXED CONNECTION CONCEPTS FOR OFFSHORE WIND AND HYDROGEN 

PRODUCTION 

frontier economics     20 

 
 

Figure 14 Sensitivity of savings in net integration cost to changes in electricity 

prices 

  

Source: Frontier Economics 

Note: Savings relative to current build-out. Electricity price numbers reflect average prices. The model uses a full hourly 
electricity price curve with varying prices. 
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potentials. 

70 GW Scenario 55 GW Scenario

 -

 500

 1,000

 1,500

 2,000

Electricity price -
20%

Baseline Electricity price
+20%

S
a

v
in

g
s

in
 €

 m
il
li
o

n
p

.a
.

Electricity price -
20%

Baseline Electricity price
+20%



EFFICIENT INTEGRATION OF MIXED CONNECTION CONCEPTS FOR OFFSHORE WIND AND HYDROGEN 

PRODUCTION 

frontier economics     21 

 
 

Figure 15 Sensitivity of savings in net integration cost to the additional cost of 

offshore electrolysis relative to onshore 

 

Source: Frontier Economics 

Note: Savings relative to current build-out. Under baseline assumptions, offshore electrolyser CAPEX is around 80 % 
higher than onshore electrolyser CAPEX. This is a conservative assumption given literature and experts estimate the 
additional cost of offshore electrolysers compared to onshore electrolysers to be between 20 % and 50 % (see 
Guidehouse and Berenschot, 2021). 
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3 Enabling mixed connection concepts to tap offshore 

wind energy potential 

Different challenges continue to hinder the deployment of offshore sector coupling in 

Germany. Existing site designations, allocation procedures and permitting frameworks limit 

the development of offshore electrolysis and integrated power-and-hydrogen connection 

concepts. Ongoing discussions on tender design, regulatory frameworks and support 

mechanisms will shape how and when such projects can help realise Germany’s offshore wind 

potential, and through it, contribute to achieving the country’s climate and environmental goals. 

3.1 Expanding areas hosting offshore electrolysis and allowing mixed 

offshore hydrogen-and-power connections  

At present, BSH has designated one zone (SEN-1) for other energy production, which is 

generally expected to host electrolysis. This pilot area, with a planned capacity of at most 1 

GW, is currently the only offshore hydrogen area foreseen in the German EEZ. All other areas 

are reserved for electricity-only projects, which limits the scope for scaling offshore hydrogen.  

These areas are defined as not connected to the electricity grid.12 As such, SEN-1, and any 

zone that could be designated to host offshore electrolysis in the existing framework, would 

not have a mixed power-and-hydrogen connection, limiting the potential for sector coupling 

and system integration. Instead, hydrogen transport is anticipated via ship or pipeline, with 

pipeline transport viewed as the preferred option.  

The allocation of SEN-1 has been repeatedly postponed. Debate continues over whether the 

area should host a single large project or be divided into smaller sub-areas. The 2023 draft 

FEP suggested a possible three-part division, but no final decision has been made. The 

current FEP 2025 does not introduce new provisions compared with FEP 2023. 

The allocation mechanism remains under discussion, and the final tender rules, initially 

expected in mid-2023, have not yet been published. A draft of the funding guidelines consulted 

by BMWK in January 2023 sets out a two-stage process:13 one tender for the allocation of the 

area, based on qualitative criteria such as efficiency, scalability and environmental impact (§ 

9 SoEnergieV), ² and a separate funding tender by BMWK based on price.³ Industry feedback 

has indicated that the sequencing of these tenders and the short interval between them could 

 
12  WindSeeG § 3 No. 8 

13  BMWK, Eckpunktepapier zur Förderrichtlinie Offshore-Elektrolyse – Marktkonsultation, Jan 2023. 

https://www.bundeswirtschaftsministerium.de/Redaktion/DE/Downloads/E/marktkonsultation-eckpunktepapier-foerderrichtlinie-offshore-elektrolyse.pdf?__blob=publicationFile&v=1
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create challenges. Developers may obtain funding without securing the area, or may need to 

prepare business cases without clarity on support levels.14 

3.2 Advancing joint power and hydrogen network planning 

Joint planning of power and hydrogen transmission infrastructure is important both from a 

system and an investment perspective. From a system viewpoint, it enables coordinated 

development of networks that will increasingly interact as hydrogen production, storage and 

use expand alongside electrification. Shared spatial planning and consistent modelling can 

reduce duplication, lower overall system costs and improve resilience. From an investor 

perspective, an integrated approach provides clearer visibility of future capacity, connection 

points and network priorities, reducing uncertainty and supporting timely private investment. 

The EU and Germany have taken initial steps in this direction by harmonising the process flow 

for electricity, gas and hydrogen network development. This reform aligns scenario 

frameworks, timelines and consultation procedures, so that network plans are based on 

consistent assumptions and developed in parallel.15  

Possible next steps towards integrated planning could include developing a single spatial plan 

to identify shared corridors and complementary infrastructure, establishing joint governance 

across transmission operators, and introducing common cost–benefit and investment 

assessment frameworks. 

3.3 Extending legal prioritisation to offshore electrolysis projects 

A final permitting and legal status concerns the draft Hydrogen Acceleration Act. The Act limits 

the status of overriding public interest to electrolysers onshore and in coastal waters, excluding 

offshore projects in the EEZ from this provision.16 In practice, this means offshore electrolysis 

does not receive the same legal prioritisation. While not prohibitive, the absence of such status 

could make permitting and approval processes comparatively more challenging, with 

implications for planning certainty for investors. 

3.4 Mitigating investment risk 

Investment risks remain a central challenge in the emerging hydrogen sector, including for 

offshore projects. The cost of electrolysis, including offshore electrolysis, is expected to reduce 

 
14  BWO, Stellungnahme zur Marktkonsultation Eckpunkte Förderrichtlinie Offshore-Elektrolyse, Jan 2023, p. 2. BDEW, 

Stellungnahme zum BMWK-Eckpunktepapier Offshore-Elektrolyse, Jan 2023. BDEW  Stellungnahme zur 

Marktkonsultation „Förderrichtlinie Offshore-Elektrolyse”. Jan , 2023 

15  Netzentwicklungsplan (2025). “Network Development Plan 2037/2045 (2025)”. 

https://www.netzentwicklungsplan.de/en/nep-aktuell/netzentwicklungsplan-20372045-2025 

16  BMWE. (2024). Wasserstoffbeschleunigungsgesetz (Anhörungsfassung) (p. 31). Retrieved from 

https://www.bundeswirtschaftsministerium.de/Redaktion/DE/Downloads/W/wasserstoffbeschleunigungsgesetz-bmwe-

anhoerung.pdf?__blob=publicationFile&v=8 

https://bwo-offshorewind.de/wp-content/uploads/2023/01/230118_BWO-Stellungnahme_Foerderrichtlinie-Offshore-Elektrolyse.pdf
https://www.bdew.de/media/documents/303_BDEW-Stellungnahme_F%C3%B6rderrichtlinie_Offshore-Elektrolyse.pdf
https://www.bdew.de/media/documents/303_BDEW-Stellungnahme_F%C3%B6rderrichtlinie_Offshore-Elektrolyse.pdf
https://www.netzentwicklungsplan.de/en/nep-aktuell/netzentwicklungsplan-20372045-2025?utm_source=chatgpt.com
https://www.bundeswirtschaftsministerium.de/Redaktion/DE/Downloads/W/wasserstoffbeschleunigungsgesetz-bmwe-anhoerung.pdf?__blob=publicationFile&v=8
https://www.bundeswirtschaftsministerium.de/Redaktion/DE/Downloads/W/wasserstoffbeschleunigungsgesetz-bmwe-anhoerung.pdf?__blob=publicationFile&v=8
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through scaling and learning effects. Early investments contribute to this process and create 

benefits for the wider sector, although individual investors may not capture this value. 

Hydrogen networks face similar challenges. They require large upfront investment, while costs 

decline as utilisation increases, leaving early users with higher unit costs. On the demand side, 

uptake is constrained by the cost gap with conventional fuels and by the expense of adapting 

existing equipment for hydrogen use.  

Incomplete carbon pricing and the cost advantage of existing fuels (with matured markets) 

further increase investor exposure, as low-carbon hydrogen remains less competitive. 

Combined with limited scale in production and transport, this leads to the familiar “chicken-

and-egg” problem: demand depends on lower costs and reliable supply, while investment 

depends on assured demand. 

Together, these factors create significant uncertainty for investors in both onshore and 

offshore hydrogen, highlighting the need for targeted measures to mitigate investment risk and 

strengthen market confidence, including for hydrogen network development.  
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Annex B Model framework & assumptions 

This annex summarises the analytical framework supporting the offshore system modelling. The first 

part describes how the model operates and the second sets out the detailed techno-economic 

assumptions applied in the analysis. These include costs, efficiencies and price parameters. 

Model framework and optimisation approach 

We use a stand-alone offshore system model to determine cost-effective infrastructure set-up  for 

integrating offshore wind energy in Zones 4 and 5 of the German North Sea. For each configuration 

(namely, current build-out, electricity-only overplanting and offshore sector coupling) and scenario (70 

and 55 GW offshore wind deployment in the German North Sea), the model minimises the net 

infrastructure costs for integrating offshore energy. We define this net cost as: 

• Costs of offshore energy production and transport infrastructure, minus  

• Revenues from electricity and hydrogen sales at wholesale market prices. 

Figure 16 illustrates how the model operates. It takes as inputs the exogenous capacities of offshore 

wind farms and electrolysers, hourly generation profiles, technology costs, efficiencies and 

transmission losses, and exogenous hourly prices for electricity and hydrogen. 

The model identifies the combination of cables, converters, electrolysers and pipelines that minimises 

total system costs while meeting technical and operational constraints. In doing so, it determines the 

most cost-effective infrastructure configuration for each configuration and scenario. 

Offshore wind generation can serve either the electricity or hydrogen market: 

• To serve the electricity market, power is transmitted directly to demand centres in central Germany 

through offshore AC/DC and onshore DC/AC conversion.  

• In the hydrogen pathway, electricity powers electrolysers, which is then transported by pipeline to 

the same demand centres. Electrolysis locates either offshore or onshore (coastal or inland, 

depending on the configuration).  

The optimisation determines how these two pathways interact and which balance between electricity 

export and hydrogen production minimises overall system costs. 

All costs and revenues are annualised17 and expressed for 2045, reflecting steady-state operation 

once capacity is deployed.  

 
17  We annualise costs using an annuity approach, which calculates annualised costs for each infrastructure element based on its 

lifetime and the assumed weighted average cost of capital (WACC). The approach assumes that costs and returns are constant 

across all years of operation. 
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Figure 16 Model illustration 

 

Source: Frontier Economics 

Note: Optimisation problem under multiple constraints. For given H2 and power prices, the model optimises supply and corresponding 
transport infrastructure. As prices reflect market needs the model automatically supports the overall energy system. Solved in 
GAMS (tool for solving large constrained optimisation problems). 

Techno-economic assumptions 

The techno-economic assumptions assume that zone 4 and onshore infrastructure is built in 2040, 

ahead of zone 5 in 2045. We model hourly electricity price curves using our sector-coupled European 

energy system model COMET18 using input load-factor profiles for offshore wind for each of the two 

wind deployment scenarios separately.19 Resulting average electricity prices are 81.5 €/MWhel for the 

70GW scenario and 84.4 €/MWhel for the 55GW scenario in 2045. Higher prices in the 55 GW scenario 

result from a reduced low-variable cost electricity supply (which is partly offset by higher full load 

hours due to lower wake effects as a consequence of a reduced density of offshore wind farms in 

zone 4). 

The hydrogen price is set to 110€/MWhH2 based on Wietschel et al., (2023) as explained in more 

detail in Section 2. 

 
18  More information on our COMET model can be found under: https://www.frontier-economics.com/uk/en/hot-topics/collection-i21808-

comet/ 

19  The EnBW team (as member of AquaVentus) provided the full-load hour profiles used in the model for the 70 GW and 55 GW 

offshore wind deployment scenarios. 

Input - costs

Input - full load hours

Input - efficiencies

Transport losses

Electrolysis

OWF

(Offshore) electrolyser

H2 pipeline infrastructure

Electricity infrastructure

Optimisation model

Power grid utilisation

Output - quantities

Power & H2 production profile 

(and overall quantity)

Curtailment (generation losses)

H2 pipeline utilisation

Output - utilisation

Input - prices

Hourly electricity prices*

Hydrogen prices

Revenues for delivered power

Revenues for delivered H2

Output - revenues

Output -

net integration cost

Output - system costs

Overall infrastructure costs =

minus

Two scenarios of hourly wind 

profiles for 70 GW and 55 GW
Reflects 

wake effects

Input - capacities

OWF capacity 

Electrolyser capacity

H2

Zone 5

Zone 4
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Table 1 Power infrastructure 

 

Infrastructure 

component 

CAPEX 

€/kWel 

OPEX 

% CAPEX / 

Year  

Lifetime 

Years 

Efficiency 

% 

WACC 

% 

Source 

Offshore windfarm 

zone 4 

1,702 2.4 35 44.7-51.5* 9 [1],[4],[5] 

Offshore windfarm 

zone 5 

1,541 2.5 35 43.5* 9 [1],[4],[5] 

Offshore  

HVDC converter  

625 1.5 35 100 7 [2],[4],[5] 

Onshore  

HVDC converter  

275 1.5 35 100 7 [2],[4],[5] 

Onshore  

AC substation 

215 1.5 35 100 7 [2],[4],[5] 

Offshore  

HVDC cable** 

2.34 / km 2.5 40 100 7 [2],[4],[5] 

Onshore  

HVDC cable*** 

433 -1,356  - 40 100 7 [3],[4],[5] 

 

Sources: 

[1] IEA 2024, World Energy Outlook 2024, Announced Pledges Scenario, https://www.iea.org/reports/world-energy-outlook-2024 

[2] ENTSO-E (2024),TYNDP 2024 Offshore Network Development Plans – Methodology, Cost Set 2, 
eepublicdownloads.blob.core.windows.net/public-cdn-container/tyndp-documents/ONDP2024/ONDP2024-methodology.pdf 

[3] Frontier based on EnBW Aurora (2025), Systemkostenreduzierter Pfad zur Klimaneutralität im Stromsektor 2040, 
https://www.enbw.com/media/presse/docs/gemeinsame-pressemitteilungen/2025/zusammenfassung-systemkostenstudie-aurora-zzgl-
enbw-ableitungen.pdf 

[4] Overall project lifetime assumption and efficiencies based on E-Bridge (2024) Assessment of connection concepts for Germany’s far 
out North Sea offshore wind areas for an efficient energy transition, https://aquaventus.org/wp-
content/uploads/2024/09/240829_AQV_ShortStudy_EN.pdf 
[5] WACC is based on internal assumptions 

Notes: 
*Average capacity factor, accounting for wake effects. For zone 4 the average capacity factor is higher for the 55GW scenario (51.5%) 
than the 70GW scenario (44.7%). 

**Offshore HVDC converter includes platform costs. Offshore HVDC cable lengths are assumed to be 300 km to zone 4 and 450 km to 
zone 5 based on E-Bridge (2024), Figure 29. CAPEX for the offshore HVDC cable is expressed in €/kWel per km. 
***Onshore HVDC cable CAPEX is calculated as gap between grid infrastructure cost in the model and final grid connection numbers in 
EnBW Aurora (2025). CAPEX increases linearly with installed capacity, from €433/kW at 45 GW to €1,357.5/kW at 70 GW. 

 

Click or tap here to enter text. 

https://www.iea.org/reports/world-energy-outlook-2024
https://www.enbw.com/media/presse/docs/gemeinsame-pressemitteilungen/2025/zusammenfassung-systemkostenstudie-aurora-zzgl-enbw-ableitungen.pdf
https://www.enbw.com/media/presse/docs/gemeinsame-pressemitteilungen/2025/zusammenfassung-systemkostenstudie-aurora-zzgl-enbw-ableitungen.pdf


EFFICIENT INTEGRATION OF MIXED CONNECTION CONCEPTS FOR OFFSHORE WIND AND HYDROGEN 

PRODUCTION 

frontier economics     30 

 
 

Table 2 Hydrogen infrastructure 

 

 

Infrastructure 

component 

CAPEX 

€/kWel 

OPEX 

% CAPEX / 

Year 

Lifetime 

Years 

Efficiency 

% 

WACC 

% 

Source 

Offshore electrolyser 

zone 4 

1,995 3.7 25 68 9 [1],[5],[6] 

Offshore electrolyser 

zone 5 

1,695 3.9 25 68 9  [1],[5],[6] 

Onshore electrolyser 1,121 4 25 68 9 [1],[2], 

[5],[6] 

Offshore  

H2-pipeline* 

0.374 / 

km 

2 50 100 7 [3],[4], 

[5],[6] 

Onshore  

H2-pipeline** 

- 0.00315** 50 100 7 [3],[5],[6] 

Sources: 
[1] E-Bridge (2024), Assessment of connection concepts for Germany’s far out North Sea offshore wind areas for an efficient energy 
transition, Table 4,https://aquaventus.org/wp-content/uploads/2024/09/240829_AQV_ShortStudy_EN.pdf  

[2] ENTSO-E (2025), TYNDP 2026 Draft Scenarios Input Data and Methodologies,https://2026.entsos-tyndp-scenarios.eu/download/ 
[3] EHB (2023) Implementation Roadmap - cross border projects and cost update, EHB-2023-Implementation-Roadmap-Part-1.pdf 
[4] OPEX are based on ENTSO-E and ENTSOG (2025), TYNDP 2024 Scenarios Methodology Report – Final Version, https://2024.entsos-
tyndp-scenarios.eu/wp-content/uploads/2025/01/TYNDP_2024_Scenarios_Methodology_Report_Final_Version_250128.pdf 

[4] Overall project lifetime assumption and efficiencies based on E-Bridge (2024) Assessment of connection concepts for Germany’s far 
out North Sea offshore wind areas for an efficient energy transition, https://aquaventus.org/wp-
content/uploads/2024/09/240829_AQV_ShortStudy_EN.pdf 
[5] WACC is based on internal assumptions 
 
Notes: 
*The offshore H2-pipeline lengths are assumed to be 300 km to zone 4 and 450 km to zone 5 based on E-Bridge (2024) . CAPEX for the 
offshore H2-pipeline is expressed in €/kWhH2 per km. OPEX are retrieved from ENTSO-E and ENTSOG (2025) plus additional OPEX for 
compression. 

**The onshore H2-pipeline is assumed to be 500 km long, and OPEX is expressed in €/kWhH2. 

https://2024.entsos-tyndp-scenarios.eu/wp-content/uploads/2025/01/TYNDP_2024_Scenarios_Methodology_Report_Final_Version_250128.pdf
https://2024.entsos-tyndp-scenarios.eu/wp-content/uploads/2025/01/TYNDP_2024_Scenarios_Methodology_Report_Final_Version_250128.pdf
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Annex C Assessing coastal electrolysis vs onshore electrolysis at 

the south of Germany 

Instead of locating electrolysis onshore at the coast, electrolysers could alternatively be connected to 

the grid further inland, for example in southern Germany. This option would have both advantages 

and disadvantages in terms of costs and revenues. On the one hand, it requires a stronger expansion 

of the onshore electricity grid to transmit offshore wind power to the southern demand centres, leading 

to higher infrastructure costs. On the other hand, it offers greater operational flexibility, as the 

additional onshore grid capacity allows electricity either to be directed to electrolysis or to be sold 

directly in the power market. 

Figure 17 compares coastal and grid electrolysis for the 70 GW scenario.  

• In the current build-out configuration, the full onshore grid connection required for grid electrolysis 

leads to substantially higher infrastructure costs than coastal electrolysis. Although the value of 

energy delivered to consumers is higher, it increases less than the corresponding costs, resulting 

in higher net integration costs of €4,545 million per year.  

• In the electricity overplanting configuration, the model reduces onshore connection capacity to 

lower costs. This also decreases the value of delivered energy, leading to net integration costs of 

about €2,329 million per year.  

Overall, coastal electrolysis constitutes the more economical form of onshore electrolysis in 

the 70 GW scenario, as locating the electrolyser at the coast avoids long and capital-intensive north-

south electricity transmission cables. 
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Figure 17 Comparison of coastal and grid electrolysis (70 GW scenario) 

 

Source: Frontier Economics 

Note: There are no differences in results for offshore sector coupling configuration where electrolyser location is always offshore. 

 

In the 55 GW scenario (see Figure), the differences are less pronounced. Two factors explain this:  

1. higher full-load hours due to lower capacity density improve utilisation of the transmission 

infrastructure; and 

2. As there is no build-out of zone 5, the average distance from shore of the OWFs decreases, 

which leads to lower offshore connection costs.  

As a result, grid electrolysis (with higher onshore transmission capacity) performs better than in the 

70 GW scenario:  

• In the current build-out, grid electrolysis shows slightly higher production and infrastructure costs 

but also a slightly higher value of energy, resulting in similar overall net integration costs.  

• For electricity-only overplanting, grid electrolysis even shows a small advantage, with net 

integration costs of €152 million per year compared with €227 million per year for coastal 

electrolysis. 
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Figure 18 Comparison of coastal and grid electrolysis (55 GW scenario) 

 

Source: Frontier Economics 

Note: There are no differences in results for offshore sector coupling configuration where electrolyser location is always offshore. 
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